Have you ever wondered why if confronted with any illness symptoms that appear even a bit abnormal, we prefer to consult with a doctor in a large hospital only, even though a more competent doctor may have a clinic next door itself.
And have you ever wondered that what that preference has to do with Artificial Intelligence (AI) and Machine Learning (ML)!
To explain that, let me recount what happened to me twenty-one years back. I vividly remember that incident from 1997 that I can now relate well to the significance AI and ML are having in healthcare currently!
I was being examined by a leading physician at Agra (who had an experience of over twenty-five years and had a roaring practice) for a pain near my left toe. The conversation progressed as follows:
I: Doc Sahib, please have a look at my left toe. I am troubled by a severe pain for over last three weeks. I cannot put my foot down or wear the shoes even.
Doctor: Did you ever have this type of pain before?
I: No
Doctor: (Examining the pain area closely) Do you feel any irritation, or feel any urge to scratch that area?
I: No.
Doctor: Do you eat lot of red meat?
I: No! I am a vegetarian.
Doctor: Do you like to eat lot of tomatoes, or cheese, or spinach or any other high protein foods.
I: Yes. Very frequently have cheese-spread, and baked beans in breakfast, and of course tomato in some form is generally there in all meals.
Doctor: (Prepares a slip for the diagnostic lab) Please have the uric acid blood test done as I suspect you have gout.
I: Thanks, Doctor. Will come back later with the test results.
(Later during the day)
I: (Handing over the lab report) Here Doc Sahib. Please have a look at the report.
Doctor: (Going through the test report) That is what I thought. You have gout! Your uric acid level is 12.4 mg/dl which ideally should have been between 3.5 mg/dl – 7.0 mg/dl. I will immediately start the medication.
(The doctor then spent few minutes to explain what gout was and how it impacted my health, and my lifestyle.)
I: Any restrictions on diet?
Doctor: Yes. For the time being completely stop eating your favorites – cheese, tomato, spinach and all dals (lintels) except ‘moong’ dal.
The treatment started that same day, and within three weeks the pain had substantially subsided, and gout was well under control.
What I have narrated above was actually the Step 3 of the treatment plan that I had followed for almost three weeks before I met that doctor at Agra.
- The symptoms – After having spent more than five years in Bangalore I had just moved to Noida and had started to adjust to a different living (and professional) environment. One day I woke up to acute pain in the area near my left toe. It appeared a little swollen and made it difficult for me to even wear the shoes.
- Treatment Step 0 – As usually happens with all of us, initially I tried out some home remedies only, like soaking the leg in warm water and taking some pain killers. That was to no avail and the pain persisted.
- Treatment Step 1 – A few days later I had to attend a family gathering where a relative of mine, fresh out of college after completing her course in medicine, had a look at it and opined that it could be some allergic reaction due to change of location (from Bangalore to Noida) and prescribed some tablets. However, the pain still persisted and even increased after few days of that treatment.
- Treatment Step 2 – It was then that I decided to consult a practicing physician and went to a clinic just across the road where we lived. He examined the pain area and diagnosed it as some sort of inflammation and advised putting poultice for few days. Even after several days of that treatment, the pain did not subside but actually aggravated.
- Treatment Step 3 – Experiencing no relief for over three weeks, I finally decided to consult my younger brother, a leading plastic surgeon at Agra, who took me to one of his colleagues who was a leading physician. What happened next, I have already stated above.
Now after twenty-one years when I analyze that line of treatment, I realize that
- The young doctor who first advised me maybe had never seen such symptoms earlier and thus was not able to diagnose correctly.
- The physician I consulted next might have seen only a few patients with a similar set of symptoms that I had (but not with the same illness), therefore was not able to formulate the right questions to ask that could have led to the correct diagnosis from a set of possible outcomes arising from similar symptoms.
- However, the doctor at Agra with his vast experience, had obviously seen those set of symptoms several times earlier and had acquired sufficient I and L to treat such cases effectively.
- Thus, though all the three doctors were surely competent, what the first two doctors obviously lacked were
- the ability to apply their I (Intelligence) in (a) arriving at the correct diagnosis based on the symptoms they were presented with, and (b) subsequently determining an appropriate line of treatment; and
- the extent of L (Learning) that comes with experience of treating hundreds and thousands of patients with various types of symptoms possible that brings in the knowledge that what could be the possible diagnoses and what treatments worked or did not, and why or why not?
By applying AI and ML techniques and solutions in healthcare it may now become possible to make available the accumulated I and L – resulting from the large number of successful (and unsuccessful) treatments by various experienced doctors – to those competent but less experienced physicians.
With access to an appropriate AI/ML system, even a physician in a small clinic in a remote location could
- draw upon the accumulated experience of other successful doctors;
- be guided properly to arrive at the correct diagnosis and subsequently to determine an appropriate line of treatment; and
- confirm that the planned line of treatment is suitable for the medical profile of the patient. In case the patient’s medical profile is not readily available (like in case of emergency patients or admittances to trauma centers), AI/ML systems could caution the first medical responders on the possible complications (if any) associated with any planned line of treatment.
For the patient:
- Assurance that the physician would arrive at a correct diagnosis, and would propose an appropriate and effective line of treatment with less or almost no margin of error;
- Obviating the need to rush to a larger hospital/clinic just because the symptoms are a bit abnormal; and
- Faster and more effective response from medics in emergency cases.
For the healthcare provider:
- Increased efficiency with lower turnaround time for patients;
- Faster and accurate diagnosis and effective treatment;
- Substantial reduction in unfair treatment cases; and
- Substantially faster and accurate response by first medical responders in emergency cases.
Thus, it is imperative that all instances of successes and failures, arising out of using any AI/ML system, are fed back into that system to ensure constant refinement of its algorithms. That will result in it providing even more accurate outcomes for future users.
From the above it is evident that an AI/ML system can be a powerful ally of a physician and its deployment should not be termed as “man against machine” by any means.
In my opinion, AI/ML technologies are still meant to assist the medical fraternity and are not really likely to replace doctors (at least in foreseeable future)!
The article has been republished here with the authors permission. The article was first published in the authors’ linkedin pulse page.
Author
You must log in to post a comment.