BLOCKCHAIN

#Blockchain in Healthcare: Will it or won’t it survive? By Tirupathi Karthik, @TirupathiKarthi


What is Blockchain

Blockchain offers a permanent record of online transactions. Transactions are deemed as a “Block” and a ledger binds them in a “chain” thus earning its moniker “Blockchain”. Each transaction is validated and stored by a network participant based on rules but sans a governing central authority. Information can neither be modified nor copied or deleted.

Every transaction has a time and date stamp, offering a trusted transaction history and allowing verification of such records. Since the information is encrypted, the only way to access the blockchain is with a passcode. This shared ledger system makes Blockchain rather secure. Given this, Blockchain is gaining new use cases for applications that require trusted and immutable data.


Blockchain in healthcare

The disruptions wrought by blockchain technology in the fin-tech industry are all over the news – Healthcare is not immune to this disruption. Healthcare Rallies for Blockchain, a study from IBM, found that 16% of surveyed healthcare executives had solid plans to implement a commercial Blockchain solution this year, while 56% expected to by 2020. (1)

It is projected that 55 % of healthcare applications will have adopted Blockchain for commercial deployment by 2025. (2)


The known use cases of Blockchain in Healthcare

Presently, healthcare transactions are slow, cumbersome and expensive. As with any new technology in the hype cycle, Blockchain also generates a lot of excitement but has few real commercial applications. There are even fewer start-ups with a proven business model. This is both an opportunity and a threat. The threat comes from lack of traction which might eventually lead to Blockchain being ignored by the entire Healthcare industry. However the opportunity to make our own future is exciting. It is really up to our imagination to conjure up innovative solutions. Few key areas of interest seen thus far include

1.     Health Data Exchange and Interoperability

With transfer of data through API’s – Blockchain achieves standardization of data format, which is used to transmit data, irrespective of capabilities of EHRs, to communicate different HL7 versions.

Blockchain provides a foundation for secure, permissioned framework for data exchange thus allowing data to be freed up for enhancing efficiency in care coordination.

2.     Data Security and backups

In 2017, over 50,000 patient records were compromised through a series of breaches resulting in multi-million dollar fines for providers. However with Blockchain, malicious parties wanting to gain access would need to simultaneously breach every participant in the network, not just one. (3)

3.     Billing Management

An estimated 5–10% of healthcare claims are fraudulent as a result of either excessive billing or billing for non-performed services. (4)

Blockchain could reduce this level of fraud and automated billing would reduce admin costs by eliminating the need for intermediaries, ultimately making the process more efficient.

4. Pharmaceuticals and Drug Tracking

Using this technology supply chain management can track drug sourcing to reduce the impact of counterfeit drug on Patient’s health. 

Challenges to Healthcare Blockchain Adoption

Fig: Healthcare executives on barriers to healthcare adoption of Blockchain worldwide in 2016 (5)

Immature technology, insufficient skills and regulatory constraints were cited as a Top-3 barriers to adopting Blockchain technology in healthcare. Some others include:

1.     Existing systems and cultural shift

Presently patient EMR data is already being managed in large legacy systems by Health systems globally. In the absence of an adverse event, Blockchain based solutions don’t have compelling business case for a rip-and-replace strategy. So it will have to evolve over a period of time and large-scale Blockchain based EMR replacement projects are unlikely to be awarded any time soon.

2.     Healthcare stakeholder network is distributed so it’s hard to implement

Insurance payers and healthcare physician providers are all not consistent in terms of how different entities handle records. In the absence of single payer, who could drive data standards, it would be extraordinarily difficult to pull different stakeholders together to adopt Blockchain as a technology. 

3.     Many players aren’t willing to share

For example insurance payers and hospitals actively try to not share data. It is a competitive advantage for hospitals to keep cost data to themselves. If they are forced to share with insurance companies, they might get lowered payouts for patients. It is difficult to share data in an environment in which these entities are for-profit.

Intrinsically Payers and Providers have conflicting priorities. Both try to maximise their returns and hence collaboration that involves data sharing, especially on costs, is not in their interests. Consequently interoperability becomes a casualty.

Can the Dotcom boom serve as a guide to the future of Blockchain?


Blockchain technology may not be the panacea for healthcare industry challenges, but it does provide efficiency in the overall health ecosystem by dis-intermediating some high cost transactions. By now, most healthcare organizations around the world have recognized that Blockchain has the potential to reduce the cost, time and risks associated with the delivery of healthcare services. According to an analysis done by BIS Research, the global Blockchain (Healthcare) market is estimated reach to USD 5.61 billion by 2025. (6)

However as history has shown, not all such exciting technology solutions survive the real-life business. In the late 90s B2B exchanges were supposed to provide similar value by bringing all stakeholders on to a common platform. It did lead to a dotcom boom for a short while but the euphoria died a natural death when there were no takers for such a vision in the real business world. Today some of the big names in B2B tech industry such as CommerceOne, FreeMarkest, Covisint, Ariba are but a pale shadow of themselves or have been completely wiped out by forces of acquisitions. There is a lesson here for us. All solutions that can technically solve a problem may not be practically monetisable!

As Captains of the Healthcare IT industry we need to make Blockchain count for the industry and ensure its commercial success. Let’s keep the solutions small and affordable but with a laser like focus on generating lasting benefits for the providers. Once that is done, scale will come as also the eventual benefits that will allow us to monetise our investments.

Source

1.https://www.forbes.com/sites/bernardmarr/2017/11/29/this-is-why-blockchains-will-transform-healthcare/#4aa71a101ebe

2.https://www.statista.com/statistics/759208/healthcare-blockchain-adoption-rate-in-health-apps-worldwide/

3.http://health.oliverwyman.com/drive-innovation/2018/04/is_blockchain_thean.html

4. https://hackernoon.com/how-blockchain-is-set-to-disrupt-the-healthcare-industry-in-2018-5d4fda455911

5.https://www.statista.com/statistics/759312/barriers-to-healthcare-adoption-of-blockchain-worldwide/

6. http://makingthehealthcaresystemwork.com/2018/07/06/beyond-the-buzz-real-opportunities-for-blockchain-in-health-care/

The article was first published on Mr. Tirupathi Karthik’s LinkedIn pulse Blog, the article is republished here with the Author’s permission. 

Author
Tirupathi Karthik

A leader in the Healthcare IT space, Tirupathi Karthik has extensive business leadership experience across Asia, the Middle East and USA, particularly in the enterprise software space. He is a passionate advocate for the innovative use of technology that turns IT investments into competitive differentiators for their stakeholders rather than using IT as a pure cost containment initiative.

In various hospital implementations, he has been championing the use of Mobility as a pervasive information delivery channel. His vision led to the use of themFirst approach with the infusion of HTML5 and Apple’s mobility products across the Napier platform. Napier’s leadership in the global marketplace continues to gather momentum on the back of one of the most modern implementations of such a technology stack.

As an Eldercare thought leader, he has been driving productivity agendas for aged care models globally and seen to the expansion of Napier’s product vision to include elderly care services delivery. Applying technology-enabled solutions for senior care providers offering nursing home, home care and activity-centre services, Napier today enables productivity and improved quality of care.

Glossary of terms and acronyms for #Blockchain and #Cryptocurrency


Blockchain: The foundational technology behind the blockchain and cryptocurrency sector. It is a virtual, immutable (unchangeable), distributed store of data stored on servers around the world. This is a new way of distributing both trust and data. It is an alternative to traditional systems where a central organization holds all the data.

Think of it as a chain of blocks of data, verified by consensus by any computer that chooses to participate. Each block of data containing anything from who has sent cryptocurrency to others to who owns what plot of land in a land registry.
Blockchain is a distributed ledger.
Block: A package of data containing multiple transactions over a given period of time.
Chain: The cryptographic link that keeps blocks together using a ‘hash’ function.
Distributed ledger: This is an analogy often made about blockchains. Instead of a centralized bank ledger, blockchains offer the promise of distributing balances throughout a network of computer servers.
You aren’t going to a single bank to store where you send your value — instead, you are going to a decentralized network of peers.
Distributed ledgers aren’t a new concept: the island of Yap used individual tables as early as 500 AD. They yelled at one another whenever they made a new transaction. Blockchains and cryptocurrencies offer the global, virtual network equivalent of that system.
Cryptocurrency: A token or currency built on top of blockchain technology. This token helps capture and distribute value from users of the blockchain. You can think of Bitcoin as the first application and cryptocurrency stemming from the blockchain. Cryptocurrencies are a subset of what are known as cryptoassets. 
Tokens: The means of exchange to give value to a transaction; typically a native cryptocurrency. Some non-currency blockchain architectures can be tokenless.
Cryptocurrency Exchange: Cryptocurrency exchanges are websites or services that let you exchange digital cryptoassets and cryptocurrencies between one another or exchange fiat currencies such as the US dollar for cryptoassets. Two of the most prominent examples of these exchanges are Coinbase and Binance.
Public/Private Keys: Keys are your way to access crypto balances and to send and receive value or data in cryptocurrency. Your public key is like your email address. It’s what allows other people to send you funds. You can share your public key with the general public.
Services like Etherscan can scan account balances and transactions associated with a public key.
Private keys are the password to your email account. Anybody who holds the private key to a wallet can access and control it and spend any tokens within it. It’s a unique string of data that represents proof of identification within the blockchain, including the right to access and own that participant’s wallet within a cryptocurrency. It must be kept secret: it is effectively a personal password
A unique string of data that identifies a participant within the blockchain. It can be shared publicly.
If you lose your private key or forget it, you’ll lose control of all the crypto assets tied to that private key/public key combination.
Cryptocurrency Wallets: Cryptocurrency wallets are ways of storing your private and public keys to your cryptoassets. A wallet is a safe you can access to then get your keys.
Wallets allow for easier access and backups if you don’t remember your private key with techniques such as the mnemonic seed phrase, a series of 25 random words you have to input to get access to your private key.
There are software wallets and hardware wallets: software wallets store your keys online, while hardware wallets use a physical device such as the Trezor to protect your private key.
MultiSig: MultiSig is a permissions system for crypto wallets. The majority of cryptocurrency wallets are single-signature. This means you only need one person’s private key to control the balance within it.
MultiSig means you need more than one private key to spend funds. This allows you to set up an M-of-M scheme. As an example, you might need 5 out of 9 signers to approve of a transaction for it to go through. This is useful for corporate wallets, where many owners and employees have to approve before a transaction is sent.
Platforms like BitGo and Xapo provide MultiSig wallets for their users.
Proof-of-work: A system where blocks of transaction data on the blockchain are mined and validated by specialized computers who earn a reward for solving specific math equations. Repeatedly running a hash function, the mechanism by which data miners win the right to add blocks to a bitcoin-style blockchain.
Mining: A practice in proof-of-work systems where computers are dedicated to solving math problems in order to claim the right to mine a block of data and to get an amount of cryptocurrency.
How it works in some more detail: the cryptographic mining piece involves solving cryptographic puzzles. A computer needs to find a nonce to combine with unverified transactions to output a verified string.
Data Mining:  The process of solving cryptographic problems using computer hardware to add newly hashed blocks to a public blockchain such as bitcoin. In fulfilling this function, successful data miners keep the blockchain actively recording transactions and, as an incentive, are awarded newly minted bitcoins for their trouble.
Mining poolA mining pool aggregates computing resources dedicated to mining cryptocurrencies and allocates any of the mined blocks proportionally. In practice, mining cryptocurrencies has some randomness to it, so mining pools serve an essential purpose in keeping volatility down for individual miners.
Proof-of-stake: Proof-of-stake pushes people who own a selection of a blockchain’s tokens to make decisions on validating the chain. In practice, it’s a much less energy-intensive practice than mining.
Resource to read: Proof-of-stake – Wikipedia
Node: Any computing server around the world can run as a cryptocurrency node, which can store a copy of the blockchain and serve to verify transactions.
Hash The result of applying an algorithmic function to data in order to convert them into a random string of numbers and letters. This acts as a digital fingerprint of that data, allowing it to be locked in place within the blockchain.
Hash Rate: A measure of the computing power dedicated to any blockchain by the miners validating transactions and blocks. The higher the hash rate, the more active the chain is and the more appealing it is to miners. It then becomes harder to attack the chain, and infiltrate it with false transactions (known as a 51% attack).  
Decentralization: A measure of how much authority is held by a central holder. You can argue that blockchains are naturally more decentralized than other methods of distributing data because there is (at least in public chains) no gatekeeper on who can join: as long as you have the computing power, you can participate in the blockchain.
Instead of all of your data residing in one central provider (ex: Equifax), it now sits and is processed and verified by a global network of computers.
Decentralization is an ideal of the blockchain community. However, it has not been perfectly achieved.
For example, the mining pools that mine most of Bitcoin are mostly based in China: a consortium of these mining pools might decide to do what is called a 51% attack. They would use their assembled computing power to change the rules of the blockchain and facilitate conditions such as “double spend”: the ability to infinitely spend the same block of cryptocurrencies, essentially creating wealth out of nothing. The control of mining resources is very centralized.
Public vs. Private Chains: There are blockchains open entirely to the public (anybody can participate) such as Bitcoin and Ethereum. There are also private blockchains that have gatekeepers who determine who can join.
Private blockchainA closely controlled network operated by consortia in which the data is confidential and is accessed only by trusted members. Private blockchains do not require a token.
Interoperability: Blockchains and cryptocurrencies are often isolated with one another, and need to be exchanged in order to be used.  
Blockchains like Aion are looking to solve the interoperability piece by making different blockchains and cryptocurrencies interoperable, or compatible with one another: imagine, for example, a world where you can trade Bitcoin and Ethereum seamlessly (without exchanges) and use them interchangeably.
Atomic Swaps: Atomic swaps involve cryptocurrencies that are tradeable with one another without needing an exchange in the middle. Typically, they have to follow the same encryption standard and have a payment channel protocol such as Lightning Network. With what’s called a hash-time locked smart contract, two individuals can trustlessly trade cryptocurrency pairs with one another: solving the interoperability piece.  
Hash functions/tables: A more technical and precise description of the underlying technical foundation of how data is shared and stored on a blockchain. Hash tables are a mainstay of computer science.
Bitcoin: Bitcoin was created by Satoshi Nakamoto in 2008 as the first application of the blockchain and as the first cryptocurrency. It is still the dominant cryptocurrency now.
Fork: There are soft forks, where a cryptocurrency maintains its value and its rules are simply rolled forward and changed in a reversible manner, usually with the assent of the majority of the community.
Hard forks are when a blockchain fails to reach consensus and has to do a hard reset and splits off into two chains. One chain adopts one set of rules and another continues the original set of rules. This is non-reversible. A hard fork is how Bitcoin and Bitcoin Cash split.
SegWit: Segmented Witness (or SegWit) is a soft fork that happened with the Bitcoin blockchain. It solved congestion on the network by increasing the blockchain’s block size limit and splitting blocks of data in two. It separated out the unlocking signature with the scripts that send and receive data with the transactional data.
This allows the network to process more transactions per second. Users don’t have to wait as long for bitcoin transactions.
Resource to read: Segregated Witness, Part 1  
Lightning Network: Lightning Network is an off-chain solution that can settle transactions without having to use the underlying blockchain. It opens up bidirectional payment channels between different individuals, allowing Bitcoin to process many more transactions per second.
Payment channels have pre-deposited amounts of crypto placed into them. They allow individuals with channels open between them to transact seamlessly without using the blockchain. Once you get a final balance, it is validated into the blockchain.
This allows for many more payments to be done per second. It also means there is some centralization between large payers.
Resource to read: Lightning Network
Schnorr: A large Bitcoin update brewing as of the time of drafting for this article, Schnorr proposes to give users a new way to generate the private and public keys critical to cryptocurrencies. It replaces the Elliptic Curve technique currently used to generate keys with the Schnorr technique.
This update increases both privacy and security by grouping together MultiSig and regular transactions in the same category, allowing the blockchain process to more transactions and hiding whether or not a transaction is MultiSig or not.
Ethereum: The blockchain behind the second largest cryptocurrency. Ethereum differentiates itself from Bitcoin by allowing programmers to build on top of the blockchain with a Turing-complete programming language. This allows programmers to build distributed applications.
While Bitcoin can be seen as one application (transfer of value) on the distributed web just like email, Ethereum is a network that allows for many different applications to come to the fore.  
The cryptocurrency associated with the Ethereum blockchain is known as Ether.
Decentralized Apps (DApps): A decentralized application is a specific type of app that serves a specific purpose within a blockchain network. It must be open-source, autonomous, and it must make changes to the underlying software via consensus from its users. It must store all its data on a public blockchain, which is auditable by the public, and it must generate tokens and be accessible via those same tokens.
DApps seem like regular web applications. Client-side, the same mechanism is in play, but server-side (or the back-end), data and control are distributed among a network of P2P (peer-to-peer) nodes and smart contracts rather than a centralized set of servers and server code.
Resource to read: DApps – Flipside Crypto
Smart Contracts:  Smart contracts refer to code that is placed on a blockchain and is then executed on it. The code can be audited by the public. Smart contracts are often regarded as a compliment or a replacement to traditional legal contracts.
A smart contract might algorithmically implement escrow payments without having the need to create a binding legal contract to hold parties accountable.
However, the term is often seen as overly broad as it can mean any block of code placed on the blockchain.
Gas: Gas is used as a transactional cost in the Ethereum blockchain. When you use Ether to access distributed applications, you have to spend a portion of gas associated with it. Gas is correlated with how much computational work your request takes. This ensures that transactional costs are rightly set for the amount of work the system needs to do.
Gas is a way to ensure that nobody tries to attack the Ethereum network by filling it with invalid requests.
Solidity: Solidity is currently the most popular programming language to write smart contracts on the Ethereum blockchain, based around EMCAScript (the basis of JavaScript).
DAO: DAOs or decentralized autonomous organizations are a collective grouping in which smart contracts make choices. The entire organization is run on the blockchain. Shareholders buy tokens that give them the right to vote on future decisions.
Resource to read: DAO – Flipside Crypto
Casper:  Casper is an implementation of the Ethereum blockchain that promises to process more transactions per second. Ethereum used to be able to process 20 transactions a second. Bitcoin could only process 4. Visa and Mastercard can process about 20000 transactions a second. Casper is an in-between step for the Ethereum blockchain to change over from proof-of-work to proof-of-stake. It implements sharding (dividing the main Ethereum chain into smaller subcomponent chains) to provide parallel processing and increased throughput.
ERC20: A set of standards based on the Ethereum blockchain. ERC20 allows anybody to create a token built on top of Ethereum’s blockchain. It is the basis of the initial coin offering craze and the advent of new “altcoins”.
Altcoins: Altcoins are tokens, cryptocurrencies and cryptoassets outside of Bitcoin and Ethereum. Coinmarketcap gives you a good view of how many there are!
Stablecoins: Stablecoins are cryptoassets pegged to a certain value or asset — for example, you have stablecoins that trade 1:1 with the US dollar. These are collateralized or not with other cryptoassets.
Initial Coin Offering: Another way to originate tokens for a blockchain. An ICO involves a marketing process, private sale, then a public sale of a newly-listed token, which then aims to be listed on as many cryptocurrency exchanges as possible. Note that there is no standard way of conducting initial coin offerings.
Hyperledger An umbrella project set up by the Linux Foundation comprising various tools and systems for building open-source blockchains.
Oracle: A bridge from a blockchain to an external data source that allows a smart contract to complete its business by referencing timely real-world information. An oracle might allow a smart contract to access consumer energy usage, live train timetables, election results, and so on.
Peer-to-peer (P2P)The direct sharing of data between nodes on a network, as opposed to via a central server. 
Permissioned ledgerA large, distributed network using a native token, with access restricted to those with specific roles.
Proof of stake The mechanism by which participants earn the right to add new blocks and so earn new tokens, based on how much of that currency they already hold.
Public blockchainA large distributed network using a native token (such as bitcoin), open to everyone to participate and maintain.

References: 

[1]: A definitive glossary of blockchain and cryptocurrency terms: 
https://thenextweb.com/contributors/2018/08/21/a-definitive-glossary-of-blockchain-and-cryptocurrency-terms/

[2]: Flipside Crypto’s guide to blockchain and cryptocurrencies:  https://flipsidecrypto.com/wealthadvisor-ebook/
Team @HCITExperts [Updated: 1st Sep 2018]
Author
Team HCITExperts

Your partner in Digital Health Transformation using innovative and insightful ideas

#Blockchain for HealthCare Equity by Arnab Paul, @iArnabPaul

In a digital Age when cars drive themselves and CEOs hold meetings across continents in virtual reality conference rooms, engagement of the disenfranchised is a less attractive endeavor than the sleek apps, making it an outlier in the realm of tech solutions.

In our endeavour to promote digital india it should be our collective effort to bring healthcare to the disenfranchised and to the people who slip out of the cracks.

Most of us just don’t bother to take care of the elephant in the room, its time all the stakeholders joined hands and come up with a solution. For me personally Equity is of paramount importance in healthcare.The lack of focus on vulnerable populations in patient safety discounts the significance of the many lives lost, all precious to those who love them. we have yet to place strategic emphasis on the need to protect all. A man’s life lost to medical error then disguised as a heart attack, either intentionally or because of unconscious prejudice about the depth of his pocket, is more than a patient safety event. 
For the millions of people who have been exposed to discrimination based on their spending capacity and limited access to resources and denial of equality in humanity, such an event adds insult to tragic injury.We must connect in ridding our health system of all forms of inequality and ensuring that all people are protected from harm equally.
As hospitals and care systems work to improve quality of care and prepare for coming changes in the health care field, the ability to fully understand their patient populations and communities is critical. Collecting and using ethnicity, language, spending capacity data will help hospitals and care systems understand their patient populations and address health care disparities. While many hospitals are successfully collecting REAL data, fewer are effectively stratifying the data to shed light on health care disparities,
We need to systematically collect REAL preference data on all patients. We need to use REAL data to look for variations in clinical outcomes, resource utilization, length of stay and frequency of readmissions within our hospital. We need to compare patient satisfaction ratings among diverse groups and act on the information. Above all we need to actively use REAL data for strategic and outreach planning for the underprivileged.
Patient satisfaction is not a clearly defined concept, although it is identified as an important quality outcome indicator to measure success of the services delivery system
There is no clear consensus between the literatures on how to define the concept of patient satisfaction in healthcare.
In Donabedian’s quality measurement model
patient satisfaction is defined as patient-reported outcome measure while the structures and processes of care can be measured by patient-reported experiences
For everything in life we need some kind of metrics, some tools to measure the clinical outcome and the patient satisfaction. So to make up for it may I suggest we incorporate Tech enabled, Blockchain optimized patient feedback mechanism.
So what is the solution, how do we propose to go about it, well unlike Press Ganey & HCAHPS (the Hospital Consumer Assessment of Healthcare Providers and Systems), Press Ganey has stated that a minimum of 30 survey responses is necessary to draw meaningful conclusions from the data it receives and that it will not stand behind statistical analysis when less than 30 responses are received. 
If we all incorporate a blockchain Ecosystem & go truly real time in the patient feedback mechanism it would greatly enhance the whole patient experience and maybe help to manage solve some of the issues in real time. Wouldn’t it be just great if we incorporate Blockchain in the patient feedback loop, we wouldn’t have to wait for 30 odd surveys to be analyzed we could just go ahead and fix the situation right away if it warrants an action.
Another major issue is NO show and Missed Appointments
One study estimates, in US alone missed appointments cost US healthcare providers up to $150 billion a year.There have been instances that a Clinic loses money because of No Showand missed appointments.Patients not showing up can be costly to the health-care system. Offices lose out on revenue, and delaying care can lead to more expensive treatments later on.

“We very much believe it’s going to take a collaborative effort, and we think that this kind of technology integration is going to be a critical path for being successful in terms of breaking down those barriers for access to transportation for the patient community.”  David Baga, CBO, Lyft

Allscripts, Lyft and few other companies have joined hands to address this problem. The companies said they hope working together will reduce the number of people who miss medical appointments because of transportation issues.
But interesting it was found in another study giving poor people free use of ridesharing services like Uber and Lyft for doctor appointments doesn’t make them any less likely to become no-shows than patients who have to find their own way there, a U.S. study suggests.
So what are we missing here, I believe incentivising ( tokens ) is the key and Blockchain could play a major role. Blockchain in itself is not a panacea for all things healthcare but it certainly holds the key to transform the current healthcare service delivery mechanism and make it more transparent and efficient.
Ehealth or no ehealth, if its not able to solve the issues of equity & empathy than its no value prop only noise, maybe it would help become a excellent facilitator in healthcare delivery but it sadly would not be able to solve the core issue of equity and empathy.
The concluding part follows:
How Blockchain could be a gamechanger for healthcare

Author

[tab]
[content title=”About Arnab Paul”]

Arnab Paul, CEO, Patient Planet

Globally-minded systems thinker, action-oriented and inspired toward optimizing health outcomes through innovation, creativity, cooperation. Passionate about facilitating the alignment among technology, people and processes to ultimately improve patient experience and the functioning of healthcare.

[/content]
[content title=”Latest Articles”]

[/content] [/tab]

The potential of #blockchain in #EHR by Danielle Siarri – @innonurse

The article is re-published here with the author’s permission. The article was first published on the author’s LinkedIn pulse blog.

A person by the pseudonym Satoshi Nakamoto published a white paper in 2008, introducing bitcoin and applications of the blockchain. The blockchain is a decentralized digital ledger, the technology underlying bitcoin: a distributed network, a shared ledger, and digital transactions. In healthcare such could mean “… blockchain technology as a way to streamline the sharing of medical records in a secure way, protect sensitive data from hackers, and give patients more control over their information.

Estonia was the first country to implement a blockchain into their electronic healthcare record (EHR) system with the collaboration of a local company established in 2008 named Guardtime, using keyless signature infrastructure (KSI). The integrity solution KSI means in short: verifying the data without a third party, keys or credentials to access the ledger and compromise the ehr.

YouTube – “Implementation of blockchain-projects in Estonia”


In Tallinn, Estonia at eHealth Tallinn, Mirko De Maldè will moderate Blockchain: Unleashing the Power of Free-Flowing Data with speakers Dr. Catherine MulliganJaan Priisalu, and Dr. Christian Dierks.

I recently had a conversation with Mirko, he stated:
“The blockchain is likely to have a profound impact on the future of healthcare, making it possible to move forward from volume-based to value-based healthcare. Concrete patient empowerment, with unprecedented control over personal datasets, together with enhanced interoperability, could particularly benefit the most fragmented healthcare systems, as the Italian one, facilitating data portability and patients’ mobility, and enabling – especially when it comes to chronic disease – the shift to personalized, proactive and participatory care by” Mirko De Maldè.

The blockchain in healthcare via Periscope with Mirko De Maldè, HIMSS Italy session in Malta

As healthcare technology evolves globally, accuracy becomes even more crucial. Data entered in electronic healthcare records need to be as accurate as possible because future clinical decision making will be based on prior and real-time information. The blockchain is a ledger to secure healthcare data, one of its main values are benefits associated with having a unique identifier for each patient that go beyond healthcare programs, jurisdictions.
This article was originally published on the HIMSS Europe Blog.

This is the follow-up Periscope from ehealthtallin in Tallinn, Estonia

Research, thoughts, and opinions are my own. Further references can be found on my personal sites innonurse.info and ammende.info
Author
Danielle Siarri

Speaker | Moderator | HealthIT Advisor | Social Media Practitioner | Clinical Marketer | SM Ambassador. Danielle has a Master of Science in Nursing Informatics and is a registered nurse with experience ranging from hospital setting of transplants and trauma to case manager in the corporate environment. Danielle is a contributor to the Philips Innovation Matters Blog, Microsoft Intel in Health Nurse Blog, Healthcare Information and Management Systems Society (HIMSS), the European Union of HIMSS and LinkedIn published author. Danielle is very active on social media and is #44 of the Top Health Information Technology 100 (#HIT100)

A collection of Potential Usecases for #Blockchain in Healthcare

Every once in a while a new technology finds its way in the Gartner Hype Cycle for Technologies (in Healthcare) and its effectiveness and usability is applied to the management and interoperability of Healthcare Records. For instance, access to the Healthcare records by various stakeholders in the care continuum: care providers and patients. 



Gartner in their recent report defines Blockchain as a Digital Platform. And healthcare industry has been perennially on the lookout for a Digital Platform that will allow for an efficient and secure way to share patient data. Providing access to the healthcare data involves providing access to the patient data to relevant stakeholders at the right time and to the right person, not only ensuring the privacy but also providing the patient control of their data. 

Another problem that remains evasive in healthcare is driven by privacy of the patient data, and has been at times been seen to be impeding the flow of patient data between disparate systems, (i.e., Interoperability). 

We now have the Blockchain Technology and various companies are working to apply the technology to help solve not only the interoperability problem but also applying the same technology to solve various usecases in the Care Continuum, to save costs, improve efficiency, ensure privacy.

So what are the problems Blockchain is being applied to in the Healthcare context? What are the benefits one would accrue by applying Blockchain to Healthcare and what are the pitfalls.

The past august, ONC in the US setout a Blockchain challenge with the objective, 

The goal of this Ideation Challenge is to solicit White Papers that investigate the relationship between Blockchain technology and its use in Health IT and/or health-related research. The paper should discuss the cryptography and underlying fundamentals of Blockchain technology, examine how the use of Blockchain can advance industry interoperability needs expressed in the Office of the National Coordinator for Health Information Technology’s (ONC) Shared Nationwide Interoperability Roadmap, as well as for Patient Centered Outcomes Research (PCOR), the Precision Medicine Initiative (PMI), delivery system reform, and other healthcare delivery needs, as well as provide recommendations for Blockchain’s implementation. In addition to a monetary award, winners may also have the opportunity to present their White Papers at an industry-wide “Blockchain & Healthcare Workshop” co- hosted by ONC and NIST.”

As part of the Ideation Challenge, the following papers were the declared winners:

1. Blockchain and Health IT: Algorithms, Privacy, and Data: This papers discusses the need to create a peer-to- peer network that enables parties to jointly store and analyze data with complete privacy, based on highly optimized version of multi-party computation with a secret-sharing. An auditable, tamper-proof distributed ledger (a permissioned blockchain) records and controls access through smart contracts and digital identities. We conclude with an initial use case of OPAL/Enigma that could empower precision medicine clinical trials and research. 
Authors:  Ackerman Shrier A, Chang A, Diakun-thibalt N, Forni L, Landa F, Mayo J, van Riezen R, Hardjono, T.
Organization:  Project PharmOrchard of MIT’s Experimental Learning “MIT FinTech: Future Commerce.”


2. Blockchain: Securing a New Health Interoperability Experience: Blockchain technologies solutions can support many existing health care business processes, improve data integrity and enable at-scale interoperability for information exchange, patient tracking, identity assurance, and validation. This paper suggests these processes can be supported by three most important applications: Creating secured and trusted care records, linking identities and recording patient consent decisions and patient directives within the secured patient record.
Authors:  Brodersen C, Kalis B, Mitchell E, Pupo E, Triscott A.
Organization:  Accenture LLP


3. Blockchain Technologies: A Whitepaper Discussing how Claims Process can be Improved: Smart contracts, Blockchain, and other technologies can be combined into a platform that enables drastic improvements to the claims process and improves the health care experience for all stakeholders. The healthcare industry suffers from an inability to clearly communicate costs in a timely and easy-to-understand format. This problem is a symptom of interoperability issues and complex agreements between providers, patients, health plans/payers and government regulators. These agreements are encoded in legal language with the intent of being defensible in court. However, the focus on legal enforceability, instead of understandability, creates problems resulting in hundreds of billions of dollars spent annually to administer an inefficient, outdated and complex process for adjudicating and paying health plan claims. 

The process results in errors and often leaves the patient unclear on how much they need to pay. If these agreements were instead translated into computer code (smart contracts) leveraging Blockchain technologies, the claim process would not only be interoperable, but also drive standardization, research and innovation. Transparency and trust can be injected into the process when both the logic and the data driving these decisions is stored permanently and made available to all stakeholders through a peer-to- peer distributed database like blockchain. The result will be a paradigm shift toward interoperability and transparency, enhancing the speed and accuracy of cost reporting to patients. This paper discusses how smart contracts, blockchain and other technologies can be combined into a platform that enables drastic improvements to the healthcare experience for all stakeholders.
Author:  Culver K. 


4. Blockchain: A new model for Health Information Exchanges: Presentation of an implementation framework and business case for using Blockchain as part of health information exchange to satisfy national health care objectives.


Authors:  Krawiec RJ, Barr D, Killmeyer K, Filipova M, Nesbit A, Israel A, Quarre F, Fedosva  K, Tsai L.
Organization:  Deloitte Consulting LLP

5. A Case Study for Blockchain in Healthcare: “MedRec” Prototype for Electronic Health Records and Medical Research Data: A long-standing focus on compliance has traditionally constrained development of fundamental design changes for Electronic Health Records (EHRs). We now face a critical need for such innovation, as personalization and data science prompt patients to engage in the details of their healthcare and restore agency over their medical data. 

In this paper, the authors propose MedRec: a novel, decentralized record management system to handle EHRs, using blockchain technology. The system gives patients a comprehensive, immutable log and easy access to their medical information across providers and treatment sites. Leveraging unique blockchain properties, MedRec manages authentication, confidentiality, accountability and data sharing—crucial considerations when handling sensitive information. A modular design integrates with providers’ existing, local data storage solutions, facilitating interoperability and making our system convenient and adaptable. 

MedRec incentivize medical stakeholders (researchers, public health authorities, etc.) to participate in the network as blockchain “miners”. This provides them with access to aggregate, anonymized data as mining rewards, in return for sustaining and securing the network via Proof of Work. MedRec thus enables the emergence of data economics, supplying big data to empower researchers while engaging patients and providers in the choice to release metadata. 

The purpose of this paper is to expose, in preparation for field tests, a working prototype through which we analyze and discuss our approach and the potential for blockchain in health IT and research.
Authors:  Ekblaw A, Azaria A, Halamka J, Lippman A. 
Organizations:  MIT Media Lab, Beth Israel Deaconess Medical Center


6. The Use of a Blockchain to Foster the Development of Patient-Reported Outcome Measures (PROMs): This paper suggests the use of Cognitive Behaviour Therapy as a modality to treat Mental Health disorders. This the author suggests is achieved by the use of various applications that allow the patient to record information using SMS or applications. These applications keep track of any emergencies, provides patient coaching and guidance, recording of daily progress and medication adherence. While many patients feel ashamed of their mental state and feel a stigma associated with conditions such as depression and anxiety, the anonymous nature of these applications may make it more likely for them to seek help. 

These types of use cases are the first step in implementing blockchain technology as they help identify the system requirements and looks at the interactions between users and systems. In this case, the focus would be on personal health information that is highly sensitive and coming from mobile applications that require direct interaction between the patient and providers, as well as those involved in the care of the patient. 

Each scenario that involves a transaction, or data being transferred from the application to those who have “signed” the transaction would be documented so the information flow and usage is understood. In this manner, the appropriate permissions would be granted and provenance could readily be established. Use of the Internet of Things in combination with Blockchain technology for Patient Reported Outcome Measures (PROMs).
Author:  Goldwater JC.
Organization:  National Quality Forum

7. Powering the Physician Patient Relationship with ‘HIE of One’ Blockchain Health IT: ‘HIE of One’ links patient protected health information (PHI) to Blockchain identities and Blockchain identities to verified credential provider institutions to lower transaction costs and improves security for all participants. 

HIE of One, (Health Information Exchange of One) shifts the trusted intermediary role away from the hospital and into the blockchain. The blockchain can also provide the link between physician credentials and patient identity.
Author:  Gropper A.

8. Blockchain: The Chain of Trust and its Potential to Transform Healthcare – Our Point of View: This paper talks about Potential uses of Blockchain technology in health care including a detailed look at health care pre-authorization payment infrastructure, counterfeit drug prevention and detection and clinical trial results use cases. The paper also highlights what Blockchain is not. Some of the additional usecases as presented in the paper are listed below:


Organization:  IBM Global Business Service Public Sector

9. Moving Toward a Blockchain-based Method for the Secure Storage of Patient Records: Use of Blockchain as a novel approach to secure health data storage, implementation obstacles, and a plan for transitioning incrementally from current technology to a Blockchain solution. The author suggests a practical first step towards moving towards a blockchain enabled world, here is a suggested workflow by the author, from the submission: 

Author:  Ivan D.

10. ModelChain: Decentralized Privacy-Preserving Health Care Predictive Modeling Framework on Private Blockchain Networks:   ModelChain, to adapt Blockchain technology for privacy-preserving machine learning. Each participating site contributes to model parameter estimation without revealing any patient health information (i.e., only model data, no observation-level data, are exchanged across institutions). 

We integrate privacy- preserving online machine learning with a private Blockchain network, apply transaction metadata to disseminate partial models, and design a new proof-of-information algorithm to determine the order of the online learning process. 

We also discuss the benefits and potential issues of applying Blockchain technology to solve the privacy-preserving healthcare predictive modeling task and to increase interoperability between institutions, to support the Nationwide Interoperability Roadmap and national healthcare delivery priorities such as Patient-Centered Outcomes Research (PCOR).
Authors:  Kuo T, Hsu C, Ohno-Machado L.
Organizations:  Health System Department of Biomedical Informatics, University of California San Diego, La Jolla, CA Division of Health Services Research & Development, VA San Diego Healthcare System.


11. Blockchain for Health Data and Its Potential Use in Health IT and Health Care Related Research: A look at Blockchain based access-control manager to health records that advances the industry interoperability challenges expressed in ONC’s Shared Nationwide Interoperability Roadmap.
In this usecase the authors discuss the use of blockchain technology with a data lake for scalability. All medical data would be stored off blockchain in a data repository called a data lake. Data lakes are highly scalable and can store a wide variety of data, from images to documents to key- value stores

When a health care provider creates a medical record (prescription, lab test, pathology result, MRI) a digital signature would be created to verify authenticity of the document or image. The health data would be encrypted and sent to the data lake for storage. Every time information is saved to the data lake a pointer to the health record is registered in the blockchain along with the user’s unique identifier. The patient is notified that health data was added to his blockchain. In the same fashion a patient would be able to add health data with digital signatures and encryption from mobile applications and wearable sensors.



Authors:  Linn L, Koo M.

12. A Blockchain-Based Approach to Health Information Exchange Networks: 
Sharing healthcare data between institutions is challenging. Heterogeneous data structures may preclude compatibility, while disparate use of healthcare terminology limits data comprehension. 

Even if structure and semantics could be agreed upon, both security and data consistency concerns abound. Centralized data stores and authority providers are attractive targets for cyber attack, and establishing a consistent view of the patient record across a data sharing network is problematic. 

In this work we present a Blockchain-based approach to sharing patient data. This approach trades a single centralized source of trust in favor of network consensus, and predicates consensus on proof of structural and semantic interoperability.

The authors describe the Healthcare Blockchain as: 

Because a blockchain is a general-purpose data structure, it is possible to apply it to domains other than digital currency. Healthcare, we believe, is one such domain. The challenges of a patient record are not unlike those of a distributed ledger. For example, a patient may receive care at multiple institutions. From the patient’s point of view, their record is a single series of sequential care events, regardless of where these events were performed. This notion of shared state across entities, inherent to the blockchain model, is congruent with patient expectations. Also, it is reasonable to assume that each patient care event was influenced by one or more events before it. For example, a prescription may be issued only after a positive lab test was received. The notion of historical care influencing present decisions fits well into the blockchain model, where the identity of a present event is dependent on all past events.

Much like the Bitcoin approach, our block is a Merkle Tree-based structure[21]. The leaf nodes of this tree represent patient record transactions, and describe the addition of a resource to the official patient record. Transactions, however, do not include the actual record document. Instead, they reference FHIR Resources via Uniform Resource Locators (URLs). This allows institutions to retain operational control of their data, but more importantly, keeps sensitive patient data out of the blockchain. FHIR was chosen as a exchange format not only because it is an emerging standard, but also because it contains inherent support for provenance and audit trails, making it a suitable symbiotic foundation for blockchain ledger entries. FHIR in conjunction with the blockchain can serve to preserve the integrity and associated context of data transactions.


A Blockchain-based approach to sharing patient data that trades a single centralized source of trust in favor of network consensus, and predicates consensus on proof of structural and semantic interoperability.
Authors:  Peterson K, Deedvanu R, Kanjamala P, Boles K.
Organization:  Mayo Clinic


13. Adoption of Blockchain to enable the Scalability and Adoption of Accountable Care:  A new digital health care delivery model that uses Blockchain as a foundation to enable peer-to-peer authorization and authentication.

The recent trends in Accountable Care based payment models have necessitated the adoption of new process for care delivery that requires the co-ordination of a “network” of care providers who can engage in shared risk contracts. In addition, the need for sharing in the savings generated equitably is key to encourage the network providers to invest in improved care paradigms. 

Current approaches to digitize healthcare focus on improvement of operational efficiency, like electronic records as well as care collaboration software. However, these approaches are still based on the classical centralized authorization model, that results in significant expense in implementation. These approaches are fundamentally limited in their ability to fully capitalize on the peer-to-peer digital work- flow revolution that is sweeping other segments of industry like media, e-retail etc. 

In this paper the author formulates a new digital health care delivery model that uses block chain as the foundation to enable peer-to-peer authorization and authentication. The author will also discuss how this foundation would transform the scalability of the care delivery network as well as enable payment process via smart contracts, resulting in significant reduction in operational cost and improvement in care delivery. 

In addition, this block-chain based framework can be applied to enable a new class of accountable tele-monitoring and tele-medication devices that would dramatically improve patient care adherence and wellness. Finally, the adoption of block chain based digital-health would enable the creation of varifiable “personalized longitudinal care” record that can form the basis of personalized medicine.

Author:  Prakash R.



14. A Blockchain Profile for Medicaid Applicants and Recipients: A solution to the problem churning in the Medicaid program that illustrates how health IT and health research could leverage Blockchain-based innovations and emerging artificial intelligence systems to develop new models of health care delivery. The solution envisions a Smart Health Profile by thinking of the blockchain profile simply as a broker that can answer questions about you as the need arises, your identity remains distributed. No one can ever see everything about you at once, including yourself. 

What makes the profile smart is that the services it provides can be quite intelligent. It can make sophisticated queries and actually trigger an action when certain conditions are met. For example, suppose you had a smart drug dispenser that recorded every dose you take as a transaction on the blockchain. A profile service might check everyday to see if you’ve taken your pill and automatically order a refill when you’ve used up all the pills. Over time, however, an AI service might become much more sophisticated to use a combination of information about your vital statistics from your wearable device and population studies of people using the various medications for your condition and either recommend a different regimen to your physician or simply cut out the middleman and direct your pharmacist to deliver you a new prescription.

The solution goes on to discuss the use of Blockchain in a medicaid scenario and a much more comprehensive solution as a distributed infrastructure for health.
Authors:  Vian K, Voto A, Haynes-Sanstead K.
Organization:  Blockchain Futures Lab – Institute for the Future


15. Blockchain & Alternate Payment Models:  Blockchain technology has the potential to assist organizations using alternative payment models in developing IT platforms that would help link quality and value.
Author:  Yip K.


References
The content provided in the examples above have been collated from the various submissions to the ONC’s Blockchain Ideation Challenge. You can write to me or connect with me, in case you are interested in receiving the copy of the documents.

In my previous article on Blockchain I shared whats Blockchain and types of Blockchain. I also discussed some of the usecases companies and startups have focussed on developing Blockchain based solutions. In this article I will share some of the usecases based on Blockchain technology, in healthcare. 

Alternatively, you could follow the links here

You can also review the various articles on Blockchain on the HCITExpert Blog.

[1]: Blockchain Articles by David Houlding:
https://www.linkedin.com/in/davidhoulding/detail/recent-activity/posts/

Author

[tab]
[content title=”About Manish Sharma” icon=”fa-heart”]

Manish Sharma

Founder HCITExpert.com, Digital Health Entrepreneur

Connect with me via any of my Social Media Channels

[/content]
[content title=”Latest Articles”]

[/content] [/tab]

What is #BlockChain? Implications for Healthcare by @msharmas

In my previous article I discussed about the benefits and barriers to the use of an Integrated Health Information Platform. In healthcare the need for presenting the Information to the Right Person at the Right Time has been proven to improve outcomes in patient treatment.

Will HIE 2.0 benefit from the use of Blockchain in presenting the information to the Right Person at the Right Time? 


What is Blockchain?
Various definitions of Blockchain have been put across based on the context of the use. Some of these definitions are: 

A digital ledger in which transactions made in bitcoin or another cryptocurrency are recorded chronologically and publicly.

“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.” Don & Alex Tapscott, authors Blockchain Revolution (2016)

The Blockchain is a decentralized ledger of all transactions across a peer-to-peer network. Using this technology, participants can confirm transactions without the need for a central certifying authority. Potential applications include, fund transfers, settling trades, voting etc.

Blockchain is a distributed system for recording and storing transaction records. More specifically, blockchain is a shared, immutable record of peer-to-peer transactions built from linked transaction blocks and stored in a digital ledger. [1]

A Blockchain is a data structure that can be timed-stamped and signed using a private key to prevent tampering. There are generally three types of Blockchain: public, private and consortium. [6] 

How is Blockchain different?

Traditional databases are proprietary to the entity that maintains them and owns them. And the information stored within these databases are accessed only by providing access via an application or shared by the entity in some form of a distributed architecture. 

On the other hand, “blockchain is enabling a database to be directly shared across boundaries of trust, without requiring a central administrator. This is possible because blockchain transactions contain their own proof of validity and their own proof of authorization, instead of requiring some centralized application logic to enforce those constraints. Transactions can therefore be verified and processed independently by multiple “nodes”, with the blockchain acting as a consensus mechanism to ensure those nodes stay in sync.” [2]

A quite often stated example for explaining Blockchain is the Google Doc example. Earlier, collaborating on a document involved a serial approach to making changes to a document. Only once the author has completed the document, can it be forwarded to the next person to edit and provide feedback. 

But consider the Google Doc (or any of the other collaboration tools), once you have created a google doc, you can start creating the document and also share the same document with other collaborators who can also make changes to the document at the same time allowing for reconciliation of changes to be incorporated within the document to finalise it. The author takes the comments from the collaborators and generates the finalised document.  


Blockchain: How it Works?

A transaction is requested. The transaction is broadcasted to the peer-to-peer network consisting of computer nodes. The network validates the transaction and the initiating entity’s status using relevant algorithms.  The transaction record is then considered to be verified.

On verification, the transaction record is added with other transactions to create a new block of data for the decentralized ledger of all transactions across a peer-to-peer network.

The new Block is added to the existing ledger of all transactions, i.e., the Blockchain. The transaction is now complete. 

Types of Blockchains

Permissionless or Unpermissioned Blockchain allows anyone to join the network and participate in the block verification. For instance, a permissionless blockchain example is the Bitcoin.

Permissioned Blockchains restricts the nodes in the network who can contribute to the consensus of the system. Only permissioned nodes have the rights to validate the block transactions.

For instance, most enterprise Blockchains are permissioned blockchain and allow for privacy, scalability and fine-grained access control. [5]

There are more types of Blockchains.
Interoperability in Healthcare

The context of discussing Blockchains in healthcare is Interoperability. There are various use cases that come to mind, when we talk about interoperability in Healthcare. (most are N:N interactions) 

  1. HIMS to Lab Equipment
  2. HIMS to PACS
  3. HIMS to HIMS
  4. HIMS to Apps
  5. HIMS to Portals (Patient, Physician, etc)
  6. Portal to Portal
  7. Stakeholders to HIE
  8. Hospitals to Insurance

You can consider the number of stakeholders in the Interoperability ecosystem and continue to add them to the above list of use cases. And that allows one to understand the current fragmented nature of the Patient’s Healthcare Information. 

Each of the above stakeholders, generate the patient care record and have the need at one time or another to share this information with others in the ecosystem. We have already seen the benefits and barriers to information exchange. 

For the purpose of this blog, lets consider the Healthcare Information exchange use case. HIEs’ share the patient information in a network that is accessed by participating entities. The Patient information available on the HIE can be accessed as and when required by the patients’ treating doctor. 

The availability of a patient information, at the right place and at the right time was (one of) the intended purpose of a Health Information Exchange. HIE frameworks relied on a centralised or federated or hybrid architectures [3] to make the information available to the participants in the exchange. The exchange is maintained by an entity.

In the nationwide Interoperability roadmap defined by the ONC (US) [1]. They define the critical policy and technical components required as  

  1. Ubiquitous, secure network infrastructure
  2. Verifiable identity and authentication of all participants
  3. Consistent representation of authorization to access electronic health information, and several other requirements


Additionally, the ONC challenge stated Potential uses to include:[6]

  1. Digitally sign information
  2. Computable enforcement of policies and contracts (smart contracts)
  3. Management of Internet of Things (IoT) devices
  4. Distributed encrypted storage
  5. Distributed trust

In India, an  Integrated Health Information Platform (IHIP) is being setup by the Ministry of Health and Family Welfare (MoHFW). The primary objective of IHIP is to enable the creation of standards compliant Electronic Health Records (EHRs) of the citizens on a pan-India basis along with the integration and interoperability of the EHRs through a comprehensive Health Information Exchange (HIE) as part of this centralized accessible platform. 

IHIP is envisaged to enable
  1. Better continuity of care, 
  2. secure and confidential health data/records management, 
  3. better diagnosis of diseases, 
  4. reduction in patient re-visits and even prevention of medical errors, 
  5. optimal information exchange to support better health outcomes

With the understanding of What is Blockchain, What is Interoperability in Healthcare and What are the use cases for Interoperability in healthcare, do you think Blockchain Technology can be used in Healthcare? Do share your thoughts and use cases.

And while you share your usecases, do read up on the very interesting two part series from Dr. Senthil N, on the  Unintended Consequences of new Technologies in Healthcare, Thoughts on Blockchain 

In the next part of the blog, I will explore some of these use cases in healthcare and for the purpose of defining how Blockchain can help interoperability of Patient Transactions across healthcare facilities.


References



3. Health Information Exchange – Architecture Types https://corepointhealth.com/health-information-exchange-architecture-types

4. Bitcoin is the Sewer Rat of Currencies, interview of Andreas Antonopoulos by Mark Frauenfelder http://ow.ly/XDMe30bumBy

5. Blockchain – What is Permissioned vs Permissionless? by Deva Annamalai on Core Dump https://bornonjuly4.me/2017/01/10/blockchain-what-is-permissioned-vs-permissionless/

6. ONC Blockchain Challenge: https://www.healthit.gov/newsroom/blockchain-challenge
Author

[tab]
[content title=”About Manish Sharma” icon=”fa-heart”]

Manish Sharma

Founder HCITExpert.com, Digital Health Entrepreneur

Connect with me via any of my Social Media Channels

[/content]
[content title=”Latest Articles”]

[/content] [/tab]

Unintended consequences of new technologies in healthcare – thoughts on #blockchains pt 2 by Dr. Senthil N @nacsen


In part one of this blog I discussed blockchains and how they could be used in health care in an ideal world. 

In the real world however, block chain use poses many challenges. The challenges range from security to accessibility perspectives, some of which are unique to health care. In a healthcare blockchain, each unique identifier is a human being, not a piece of cryptocurrency. So, anyone with access to a blockchain can see how many transactions a patient has had and their timestamps, then extrapolate how healthy or sick a person has been. 

The timestamps as well as the names and inferred locations of hospitals and doctors who are granted access expose some amount of personal information about the age of a person, what provider he/she has seen and when, and possible diagnoses, location or travel patterns. So, it becomes critical to control access to the blockchain itself, not just the records that the blockchain entries point to.

It would be naïve to assume that all patients can manage authorizations to their blockchain if they have a mobile application, considering we have been struggling with patient education and patient compliance for years in the real world. 

Many patients struggle to understand their health conditions and to comply with treatments or preventive interventions, let alone being able to afford and use a mobile device effectively. I can see that mobile devices with simple screens can ask a patient whether they want to allow “Dr. X at hospital Y to access their medical record,” but the questions become complex if the access is for specific documents or specific purposes for specific periods of time. Furthermore, if the data access is for research, the authorization questions become even more complicated.

It is just as complex to help users revoke complex access patterns. When mobile phones figure out how to provide an easy mechanism to grant or revoke specific hardware or data access permissions to the umpteen number of apps in a usable manner, I would think it is possible to do so with blockchain access control.

Another challenge for patient privacy is to define a way to protect sensitive data categories (HIV, mental health or substance abuse records, for example). We need a way to protect the blockchain entries for these categories through effective use of authorization records in the blockchain. 

Authorization records will need to specify the authorized individual at applicable document and accessing healthcare provider levels rather than allowing access to the patient’s entire blockchain and accessing healthcare organization levels. The blockchain entries need to have sufficient metadata to describe sensitive data categories and the blockchain service needs to return appropriate responses when there are redacted sensitive data categories to which a provider is not allowed access.

Currently, some of the challenges in creating a longitudinal, interoperable medical record are the unique identification of patients across multiple systems and merging duplicate identifiers reliably in Enterprise Master Person Index (EMPI) systems. This becomes even more challenging with blockchains because we would require patients to provide their blockchain identifier rather than their name, date of birth, driver license or social security number. 

We would need to find each patient’s blockchain identifier to avoid creating multiple blockchains for a single patient, and we need the ability to merge or unmerge blockchains to reconcile cases where a patient ends up having multiple blockchains or when the blockchains of different patients are erroneously merged. Such capabilities are required before the technology can be adopted in health care.

Additionally, we need to consider the ramifications of a security breach and develop measures to reduce the risk or mitigate the consequences. Due to the replicated nature of blockchains, the blockchain services will potentially have blockchain entries of individuals from all over the country or the world. There are both pros and cons to allowing or disallowing global replication of blockchain entries. 

Ideally, the blockchain service should not have any personally identifiable information (PII) in order to reduce the risk of this information being compromised in a breach. Not having PII would mean that one cannot search the blockchain using a patient’s PII. So, a patient’s blockchain would need to be replicated to all trusted blockchain services so that the patient’s entire medical record can be reconstructed without knowing any PII. 

Now, if methods to identify patients become available in the future, we cannot limit the exposure of past entries that are already added to a patient’s blockchain and could get replicated globally. There is no way to guarantee the security of all the distributed blockchain services, and one breach would mean that the blockchain entries of all patients are out in the open. 

The authorization entries in the blockchain would be invalid. This would place undue burden of security on the off-blockchain medical record stores. They may have to resort to measures such as one-time passwords (single use keys) that the patient gives to the provider to further authenticate the access request, or we may need a separate trust relationship system that is outside the blockchain.

Modern medicine is “modern” due to the adoption of new technologies, while it remains “medicine” due to the almost fanatical devotion to the guiding principles of ‘primum non nocere’ and the scientific method. As practitioners and supporters of modern medicine, it behooves each of us to think through all the unintended consequences that are unique to health care, as well as applicable to other domains while we create new breakthroughs to make medicine even more modern.

The article was first published by the author on the 3M HIS Inside Angle – Blog, the article is being republished here with permission.
Author
Senthil K. Nachimuthu, MD, PhD,

a Medical Informaticist with 3M Health Information Systems’ Healthcare Data Dictionary (HDD) team at 3M Health Information Systems, Inc. He is a medical informaticist and a physician by training, and he leads the research and design of HDD Access and other clinical terminology products of 3M HIS. He is also an avid user and contributor to various open source projects, and has served as the Chair of the AMIA Open Source Working Group in the past. He also contributes to the development of various standards such as HL7 Common Terminology Services version 2 (CTS2) and SNOMED CT. In addition to clinical terminologies and ontologies, his research interests include in clinical decision support, epidemiology, data mining, machine learning and patient safety.

Unintended consequences of new technologies in healthcare – thoughts on #blockchains, Part 1 by Dr. Senthil @nacsen


Many of you might have read the recent findings by researchers Isao Echizen et al. from the National Institute of Informatics (NII) of Japan that it is possible to copy one’s fingerprints from pictures taken from up to 10 feet from the subject who was holding a peace sign, given proper lighting and focus. As cameras with more than 20 megapixel resolution become commonplace, many daylight photographs would meet this criteria. It is not farfetched to imagine that one could copy iris patterns from portrait photographs just as easily. For the majority of the world population with darker eye colors, their iris patterns would not be clearly visible in the visible light wavelength, which is why iris scanners use near-infrared wavelengths. 


However, it is easy to see that the improvements in ubiquitous high resolution photography make two technologies obsolete at once. Suddenly, copying fingerprints and iris patterns isn’t just the running gag of the “Mission Impossible” movies anymore, since there is not much we can do to retract publicly available images of one’s fingerprints and irises. The most that can be done is to use fingerprint and iris recognition technologies for convenience rather than security. The fingerprint and iris patterns would reduce the search space, but we will still need to authenticate the individual in a different way. We cannot have the fingerprint and fingerprick blood analyzer machines such as the ones in the “Gattaca” movie all over the place, so we have to use other non-invasive multifactor authentication technologies

This made me think about unintended consequences of new technologies in health care, and how those consequences could affect health care. One of the new technologies that has been popular in the medical informatics literature recently is the use of blockchains (like the ones used in bitcoin).

A blockchain is a log of all transactions that sequentially link what happened to a specific piece of digital currency. The blockchain is transparent and is replicated to multiple servers almost immediately. So, when you use a digital cryptocurrency such as bitcoin, one could verify if you are the rightful owner of that piece of currency by checking its blockchain, and maintain the log by adding the new transaction to the blockchain service.

There have been many articles recently in medical informatics/healthcare IT literature that describe how blockchains can be used to both compile a patient’s longitudinal medical record as well as manage authorization to a person’s medical record. Many of them seem to cite the article “Decentralizing Privacy: Using Blockchain to Protect Personal Data” (PDF link) by MIT researchers Zyskind et al., which describes how blockchains can be used to have data stored in decentralized stores (think hospital EMR systems), while using a blockchain service to link them all and control authorization (think health information networks).

Various articles describe how the blockchain will contain records for all data and authorization transactions for a patient’s medical record. Every time a new document is created for a patient, whether by a clinician, laboratory, pharmacy, billing system or  wearable medical device, a new record is added to that patient’s blockchain, which contains a pointer to an off-blockchain location where that record is stored, such as a specific document identifier in a hospital’s electronic medical record.

Each patient owns their blockchain, and grants or revokes access to those who can add new records to their blockchain or who can read the documents referred to by the blockchain. These data are stored in the blockchain itself as authorization records. It is easy to see that a patient could also say who can query their blockchain itself. Healthcare providers with the proper authorization can access a patient’s blockchain or add new transactions to it.

As with standard practice in medicine, I can see that healthcare providers without authorization can “break glass” during a medical emergency to treat a patient. In addition to providers, wearable electronic devices can also add transactions to a user’s blockchain to track data from their biosensors. Patients can use mobile applications or rely on a healthcare provider to grant and revoke access to their blockchain. 

Technologies like FHIR can come in very handy since every document referred to by the blockchain entries can be a FHIR resource, and the FHIR resource directory for a patient can be integrated with a blockchain service to get a distributed medical record that provides the benefits of both FHIR and blockchain technologies.

While this sounds like a great application in the ideal scenario, it is not without its challenges. Look for part two of my blog where I will discuss the challenges of implementing blockchains in health care.

The article was first published by the author on the 3M HIS Inside Angle – Blog, the article is being republished here with permission.
Author
Senthil K. Nachimuthu, MD, PhD,

a Medical Informaticist with 3M Health Information Systems’ Healthcare Data Dictionary (HDD) team at 3M Health Information Systems, Inc. He is a medical informaticist and a physician by training, and he leads the research and design of HDD Access and other clinical terminology products of 3M HIS. He is also an avid user and contributor to various open source projects, and has served as the Chair of the AMIA Open Source Working Group in the past. He also contributes to the development of various standards such as HL7 Common Terminology Services version 2 (CTS2) and SNOMED CT. In addition to clinical terminologies and ontologies, his research interests include in clinical decision support, epidemiology, data mining, machine learning and patient safety.

The Current Status of 8 Future Technologies on Healthcare by @msharmas

It’s mid-2016, and here is a look at the current status of 8 Future Technologies that might be having a significant impact on Healthcare


Most if not all these technologies will make an impact on Healthcare, and hence it is important to understand the various scenarios and the stories detailing how the experts from across the world are incorporating these technologies in healthcare


1 Internet of Things

By 2020, there are expected to be 50B IoT devices with a total economic impact of $3.9Trillion – $11.0Trillion across all the industries, out of which $1.6 trillion impact in the “Human” segment.

Experts have identified the various areas in Healthcare, where IoT-based solutions can be implemented in healthcare. 

  • IoT refers to any physical object embedded with technology capable of exchanging data and is pegged to create a more efficient healthcare system in terms of time, energy and cost.
  • Dr. Vikram in his article on how IoT can transform healthcare opined the benefits of remote patient monitoring in emergency cases
  • Dr. Pankaj Gupta, noted in his article for IoT-based solutions to be aggregators of healthcare data from primary, secondary and supporting care market will begin to be aggregated. It will be in the interest of Insurance, Pharma and Govt to support IoT driven Healthcare Market Aggregation
Digital Health startups are working on the following categories as showcased in The Map of Healthcare IoT

  • Clinical efficiency, 
  • clinical grade biometric sensors/ wearables, 
  • consumer home monitoring, 
  • brain sensors/ neurotechnology, 
  • fitness wearables, 
  • sleep monitoring and infant monitoring

IoT platforms need to be created to ensure the utilization of data being generated by the IoT devices deployed in healthcare. Absence of platforms to aggregate IoT device data will result in loss of meaningful and contextual insights being drawn for the patients’ conditions.
 
Here is an Infographic, by Team HCITExperts, IoT in Healthcare, Types of Opportunities

2 Augmented Reality

Pokemon Go happened and augmented reality has triggered the imaginations of the innovators to work on bringing the technology to Healthcare

By 2020, an IDC report states AR – VR revenue will hit $162Billion by offering major applications for healthcare and product design.

In a recently concluded Intel developer conference, Microsoft’s Windows chief Terry Myerson announced a partnership with the chip maker that will make all future Windows 10 PCs able to support mixed reality applications.

For instance, Live 3D imaging is one of the hottest topics in optics today, transforming medical imaging capabilities and delivering the immersive experience behind augmented and virtual reality.  

Tim Cook in a recent interview indicated Augmented Reality to be a bigger market than virtual reality.

3 Virtual Reality

With VR technology projections reaching $3.8Billion by 2020, there will be an increase in the use of VR technologies in Healthcare

Virtual reality has an increasing number of implementation opportunities in Healthcare for education, training and patient treatment.

While the cost of using VR in healthcare is still something that needs to be dealt with, partnerships like the one with Intel and Microsoft only bodes well for bringing the technology mainstream and be cost effective.

VR tech is currently being used to 

  • virtually zoom around the patient’s brain to pinpoint an aneurism before the operation. 
  • 3D virtual renderings of the patient’s anatomy lets physicians get a very real experience before operating on the patient
  • the Virtual Reality is being used to present the patient a virtual human agent that replicates a Doctor & Patient communication, where patients can get their questions answered in an environment free from judgement
  • train surgeons how to use new or unfamiliar devices
  • presenting medical images such CT-Scans and MRIs as 3D renderings for improved accuracy of diagnosis 
  • and as an alternative treatment for seniors

4 Blockchain 
Interoperability in Healthcare is a big topic for debate and a sore unsolved puzzle. With the US HHS and ONC seeking research on Blockchain for Healthcare, there seems to be growing interest in the technology. 

For instance, “By combining the blockchain with the peer-to-peer business model, this creates the potential for a near-autonomous self-regulated insurance business model for managing policy and claims. No single entity would control the network. Policyholders could “equally” control the network on a pro-rata basis” 
– Cyrus Maaghul in Why out of hospital Blockchains matter

Blockchain technology is being researched to be the super secure healthcare data aggregator of EHR data and IoT devices data

Blockchain technology is supposed to benefit healthcare 

  • in population health and clinical studies, 
  • interoperability, 
  • patient centricity, 
  • security,
  • supply chain management 
  • Merck has already announced its exploring the use of Blockchain technology for clinical trials. For instance, if a patient is enrolled for multiple clinical trials, a single blood test common to all the clinical trials needs to be done only once and can be shared across the clinical trial studies the patient has enrolled for.
  • In a recently concluded challenge, ONC in the US announced 15 winners for the use of Blockchain in Healthcare

5 Artificial Intelligence
Artificial Intelligence has been a topic of research all these years, but with the advent of the Data Age, Artificial Intelligence is fast moving mainstream and presents a viable business opportunity. 

“By 2025, AI systems could be involved in everything from population health management, to digital avatars capable of answering specific patient queries.” — Harpreet Singh Buttar, analyst at Frost & Sullivan.

In a recently published report, AI adoption by enterprises is imminent. 38% of respondents are already using AI, another 28% will adopt it by 2018. 

The AI ecosystem is projected to be worth $5.5Billion by 2020

Artificial Intelligence ecosystem consists of:

  • Deep Learning
  • Evidence Based
  • Machine Learning Systems
  • Prescriptive Analytics
  • Natural Language Generation
  • NLP/ Text Mining
  • Predictive Analytics
  • Recommendation Engines

Artificial Intelligence has already started making its way into healthcare, with 90+ AI startups getting funding to deliver solutions like; 

  • helping the oncologist define the best treatment plan specific to each patient
  • a virtual nursing assistants, to follow-up with patients post discharge
  • drug discovery platforms, for new therapies
  • Medical Imaging and diagnostics 
  • The use of AI in diagnosing diseases, patient education and reducing hospital costs
  • You can also find a great discussion on machine learning, wherein how machine learning could replace/ augment doctors via the health standards podcast with Fred Trotter.

Some of the other areas where AI is being implemented in Healthcare. Microsoft, Apple, IBM and other major players are all looking to AI help in curing people. And they are forming a group that creates the standard of ethics for the development of AI.

Finally have a look at the AI in healthcare: Category Heatmap

Source: CBINSIGHTS


6 3D Printing 
3D Printing in Healthcare is making fast inroads in many disruptive ways. The projected market size for 3D Printing in Healthcare as suggested in the IDC report:

“Global revenues for the 3D printing market are expected to reach $US35.4 Billion by 2020, more than double the %US15.9 Billion in revenues forecast for 2016.

This represents a compound annual growth rate (CAGR) of 24.1 percent over the 2015-2020 forecast period, IDC research reports that while 3D printers and materials will represent nearly half the total worldwide revenues throughout the forecast, software and related services will also experience significant growth”

Gartner expanded the number of profiles from 16 in 2014, to 37 technology and service profiles in their latest Hype Cycle for 3D Printing 

3D Printing in Healthcare is being used in the following ways: 

  • 3D Printing and Surgery. All surgical and interventional procedures with complex pathology, extensive resection and/or extensive reconstructions could benefit from this technology: Orthopedics, Cardiovascular, Otorhinolaryngology, Abdominal, Oncology and Neurosurgery.
  • A bespoke 3D Printed model of the patient’s forearm changed the standard course of a 4 hour surgery to a 30 min less evasive soft tissue procedure
  • Affordable prosthetics
  • the FDA has touted the use of 3D Printing in personalised medicine, ans has already cleared 85 medical devices and one prescription drug manufactured by 3D Printing.

Researchers are also exploring the use of 3D Printing which could come mainstream in the future such as Printing prescription drugs at home, Synthetic skin, 3D Printing and replacing body parts.

7 Drones

Last year in a conference a researcher proposed the use of Drones for delivering healthcare in much the same way Katniss receives medicine in the Hunger Games movie or for that matter in the movie Bourne Legacy, UAVs are shown to retrieve the blood samples of Jeremy Renner.

The worldwide market for drones is $6.8 billion anticipated to reach $36.9 billion by 2022

Similarly, there is an active interest in the use of drones to be monitoring traffic, to delivering pizza and products ordered online. 

In context of Healthcare, UAVs are being field tested for transporting samples and blood supplies, medical drone manufacturer Vayu is using UAVs to deliver cutting edge medical technology in Madagascar. In Rwanda, estimated 325 pregnant women per 100,000 die each year, often from postpartum hemorrhage. Many of these deaths are preventable if they receive transfusion via drone delivery in a timely manner. 

In India, Fortis hospital plans on using drones during Heart Transplants, to cut the travel time and save lives. An estimated 500, 000 are in need for organ transplants in a year in India.

Drones & UAVs are also being tested for delivering emergency medical supplies during accidents and natural disasters.

8 Robotics

Robotics in healthcare has been used for sometime now, for instance the Da Vinci surgery system is being used for a myriad of surgeries. 

Just the other day i came across an article on robots being used for some of the tasks at the reception of the hospital.

“Cloud robotics can be viewed as a convergence of information, learned processes, and intelligent motion or activities with the help of the cloud,” the report explains. “It allows to move the locus of ‘intelligence’ from onboard to a remote service.”Frost and Sullivan report on Cloud Robotics.

The overall world market for robotics in healthcare will reach $3,058m in 2015, and expand further to 2025.

The global robotics industry will expand from $34.1 billion in 2016 to $226.2 billion by 2021, representing a compound annual growth rate (CAGR) of 46%.

I was reviewing the articles on Robotics in Healthcare and came across this very comprehensive article Robots/ Robotics in Healthcare by Dr. Bernadette Keefe, MD which provides a comprehensive look at the current and future trends.

Other areas robots are being used in healthcare in addition to the above scenarios are: 

Forrester’s Top Emerging Technologies To Watch: 2017-2021 http://bit.ly/2dmVRkZ  via @GilPress

And there you go, we look forward to you sharing your experiences and thoughts regarding these Future Technologies and share them with our community of readers. 

We appreciate you considering sharing your knowledge via The HCITExpert Blog

Suggested Reading

  1. The Future of Healthcare Is Arriving—8 Exciting Areas to Watch | Daniel Kraft, MD | Pulse | LinkedIn http://ow.ly/KrGS304kGjs
  2. Why the A.I. euphoria is doomed to fail | VentureBeat | Bots | by Evgeny Chereshnev, Kaspersky Lab http://ow.ly/CMKu304kGyU
  3. Looking Back At Today’s Healthcare In 2050The Medical Futurist http://ow.ly/4Dl6304kVZZ
  4. Incisionless robotic surgery offers cancer patients better chances of survival: StudyTech2 http://ow.ly/gpMS304l3wq 
  5. Robots/Robotics in Healthcare | Bernadette Keefe MD http://ow.ly/wRbb304lz44
  6. By 2020, 43% of IT budgets will be spent on #IoT: Jim Morrish, Machina ResearchThe Economic Times http://ow.ly/VKuT304lFi9  
  7. Forrester’s Top Emerging Technologies To Watch: 2017-2021 http://bit.ly/2dmVRkZ  via @GilPress
  8. Are killer bots about to do away with smartphone apps? – http://www.bbc.com/news/technology-37154519 
  9. Where machines could replace humans–and where they can’t (yet) | McKinsey & Company http://ow.ly/v9BY100dNn6 
  10. 2016’s hottest emerging technologies | World Economic Forum http://ow.ly/Jq2R100m4AS 
  11. The Top 10 Emerging Technologies 2016list, compiled by the Forum and published in collaboration with Scientific Americanhttp://www3.weforum.org/docs/GAC16_Top10_Emerging_Technologies_2016_report.pdf 
  12. Rwanda’s hospitals will use drones to deliver medical supplies http://money.cnn.com/2016/10/13/technology/rwanda-drone-hospital/index.html?iid=hp-toplead-intl 
  13. 4 Trends Shaping The Future Of Medical Events https://t.co/rUUUJ7oqkK #digitalhealth #hcsm https://t.co/KuPgGW4k9Z 
  14. Post-PC Tech Rules at Intel Developer Forum 2016 https://lnkd.in/fKux3Ek 
  15. House MD vs Doctor #AI- Who will turn out to be the better by @RoshiniBR http://ow.ly/elXy304mYpv

    Author

    [tab]
    [content title=”About Manish Sharma” icon=”fa-heart”]

    Manish Sharma

    Founder HCITExpert.com, Digital Health Entrepreneur

    Connect with me via any of my Social Media Channels

    [/content]
    [content title=”Latest Articles”]

    [/content] [/tab]

    Why Out-of-Hospital Blockchains Matter by Cyrus Maaghul @Pointnurse

    Bitcoin and blockchain technology will be game changers too


    This article was first published in Mr. Cyrus Maaghul’s LinkedIn Pulse post here . The article is published here with the author’s permission.

    I bought my first bitcoin in May 2013 while on a vegan retreat in Asheville, North Carolina. Going through the purchase process reminded me of when I first downloaded Mosaic and surfed the net. I thought to myself, “this is going to be a game changer”. It was.



    Bitcoin and blockchain technology will be game changers, too.

    Bitcoin, its underlying blockchain and evolving peer-to-peer networks with Turing-complete smart contracts such as Ethereum will have a disruptive impact on many industries for years to come. Financial services, payments, supply chain logistics, insurance, and healthcare are just a few that will be disrupted with these new technologies.

    Out-of-hospital blockchains

    Healthcare will be a primary beneficiary of these new technologies, especially outside of the walls of hospitals.

    As more and more health and preventive care is provisioned in virtual environments, at home, in cars, at work, etc, the need for open and accessible tracking, verifying and provisioning of care will become extremely critical for patients, payors, providers, scientists and regulators.

    These new out-of-hospital (OOH) blockchains developed in the non-clinical community will set the pace for how patient behavioral and inter-clinic visit vital data is tracked in the future for provider reimbursement, regulatory compliance, safety monitoring and patient adherence.

    The blockchain is a near-perfect technology (not necessarily the current implementations) to securely and safely make OOH data easily accessible with relatively minimal privacy and hack risk to all patient stakeholders, including the patient themselves, family, caregivers, clinics, providers, insurance companies and all those with a stake in their patients’ health.

    Each and every one of these stakeholders or network peers approved by the patient can easily join OOH blockchains as either nodes or buyer or seller of tokens or payments to gain access to patient data, utilizing a variety of open access methods and smart contracts that store and monitor real-time contractual conditions agreed to by and between various stakeholders.

    There will be many OOH blockchains developed to address the myriad of use cases in healthcare, including tracking the development of drugs, doctor and nurses credentialing, real-time population health data analysis and alerts, insurance peer-to-peer risk pooling, telemedicine and home health visit data sharing, decentralized autonomous organizations, verification and audits, and remote device monitoring commonly addressed today under the Internet of Things category.

    These open and viable peer-to-peer healthcare blockchains will open the door to new business models in healthcare, including analytics-for-healthcare products and services, flash malpractice insurance and friction-less claims processing hence shorter revenue cycles.

    Healthcare insurance claims processing

    It is no secret that healthcare claims processing is a nightmare for all parties involved. Reimbursement is opaque, fraud is prevalent, and transactions frequently difficult to reconcile.

    For example, home health, a great OOH blockchain example, is possibly one of the greatest sources of fraud in the US healthcare industry today. Smart contracts powered by a blockchain could provide consumers and payors with the means to manage claims in a transparent, immutable and responsive fashion.

    Insurance contracts, premium payments and their respective claims could be recorded onto a blockchain and validated by node consensus, preventing fraudulent claims from being processed. Smart contracts could enforce claims triggering payments when due or dispatching specialists, nurses or doctors to follow up with patients when anticipated claims are not recorded by presumptive dates.

    Managing “super-utilizers”

    The term super-utilizer describes individuals whose complex physical, behavioral and social needs are not well met through the current fragmented health care system.

    These individuals go from emergency room to emergency room, to admission and re-admission, in a chaotic and costly manner. Mental health, substance abuse, poverty and education are frequently cited as common characteristics of many but not all in this group. Many researchers and experts postulate how more “community support” and “real-time engagement” is needed to manage this socially isolated population of healthcare super-utilizing consumers.

    Smart contracts powered by an OOH blockchain utilizing the bitcoin payment system could be used to create a rewards and incentive system to manage super utilizer behavior.

    Behavioral contracts could be developed between payor and patient to trigger rewards denominated in BTC for attending support groups, regularly engaging a telehealth professional, reporting health conditions (possibly at kiosks with bitcoin point-of-care devices), and meeting agreed upon health goals.

    Payors would fund reward payouts via efficient BTC accounts established at commercial digital currency exchanges. A smart contract would trigger a reward payment (or loss) when goals are met near real-time to the patient’s public bitcoin address which in turn could be tendered at local participating outlets equipped with BTC point-of-contact devices including community centers, supermarkets and apartment complexes to pay bills, purchase healthy foods and meet rent obligations.

    Medical malpractice insurance DAOs

    In theory, decentralized autonomous organizations (DAOs) are entities that are self-governing. DAOs on a OOH blockchain could enable trust and provide an immutable record and audit trail of an agreement without a single controlling body.

    Doctors and nurse practitioners could collaborate to establish a peer-to-peer malpractice DAO and record each peer’s premium payments and claims on the blockchain. All premiums paid in would create a pool of capital to pay claims.

    By combining the blockchain with the peer-to-peer business model, this creates the potential for a near-autonomous self-regulated insurance business model for managing policy and claims. No single entity would control the network. Policyholders could “equally” control the network on a pro-rata basis.

    But, these are just a few examples of how bitcoin and blockchain technology will change the face of healthcare in the future.

    The blockchain is a new and exciting technology, and we are now just beginning to see both small and large players dip their toes into the water. I personally would discourage any entrepreneur from pursuing the use of blockchain technology inside the walls of clinics and hospitals today, as the those lanes are laden with painful obstacles – the OOH blockchain is your winning lane today

    Author
    Cyrus Maaghul

    Cyrus Maaghul is a thought leader in healthcare, technology, and finance with experience in markets around the globe. He is keenly interested in the blockchain, cryptocurrencies, and healthcare particularly the intersection of physical and behavioral health and provider empowerment